EconPapers    
Economics at your fingertips  
 

Performance Assessment of Advanced Daily Surface Soil Moisture Products in China for Sustainable Land and Water Management

Dai Chen, Zhounan Dong () and Jingnan Chen
Additional contact information
Dai Chen: School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Zhounan Dong: School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Jingnan Chen: School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

Sustainability, 2025, vol. 17, issue 14, 1-19

Abstract: This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic Soil Moisture Monitoring Network. All products were standardized to a 0.25° × 0.25° grid in the WGS-84 coordinate system through reprojection and resampling for consistent comparison. Daily averaged station observations were matched to product pixels using a 10 km radius buffer, with the mean station value as the reference for each time series after rigorous quality control. Results reveal distinct performance rankings, with SMAP-based products, particularly the SMAP_IB descending orbit variant, achieving the lowest unbiased root mean square deviation (ubRMSD) and highest correlation with in situ data. Blended products like ESA CCI and NOAA SMOPS, alongside reanalysis datasets such as ERA5 and MERRA2, outperformed SMOS and China’s FY3 products. The SoMo.ml product showed the broadest spatial coverage and strong temporal consistency, while FY3-based products showed limitations in spatial reliability and seasonal dynamics capture. These findings provide critical insights for selecting appropriate soil moisture datasets to enhance sustainable agricultural practices, optimize water resource allocation, monitor ecosystem resilience, and support climate adaptation strategies, therefore advancing sustainable development across diverse geographical regions in China.

Keywords: soil moisture; in situ measurement; sustainability; product evaluation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/14/6482/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/14/6482/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:14:p:6482-:d:1702289

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-16
Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6482-:d:1702289