EconPapers    
Economics at your fingertips  
 

Date Palm ( Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products

Nasser Al-Habsi ()
Additional contact information
Nasser Al-Habsi: Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34-123, Al-Khodh 123, Oman

Sustainability, 2025, vol. 17, issue 16, 1-42

Abstract: Date palm ( Phoenix dactylifera L.) is a vital crop cultivated primarily in developing regions, playing a strategic role in global food security through its significant contribution to nutrition, economy, and livelihoods. Global and regional production trends revealed increasing demand and expanded cultivation areas, underpinning the fruit’s importance in national food security policies and economic frameworks. The date fruit’s rich nutritional profile, encompassing carbohydrates, dietary fiber, minerals, and bioactive compounds, supports its status as a functional food with health benefits. Postharvest technologies and quality preservation strategies, including temperature-controlled storage, advanced drying, edible coatings, and emerging AI-driven monitoring systems, are critical to reducing losses and maintaining quality across diverse cultivars and maturity stages. Processing techniques such as drying, irradiation, and cold plasma distinctly influence sugar composition, texture, polyphenol retention, and sensory acceptance, with cultivar- and stage-specific responses guiding optimization efforts. The cold chain and innovative packaging solutions, including vacuum and modified atmosphere packaging, along with biopolymer-based edible coatings, enhance storage efficiency and microbial safety, though economic and practical constraints remain, especially for smallholders. Microbial contamination, a major challenge in date fruit storage and export, is addressed through integrated preservation approaches combining thermal, non-thermal, and biopreservative treatment. However, gaps in microbial safety data, mycotoxin evaluation, and regulatory harmonization hinder broader application. Date fruit derivatives such as flesh, syrup, seeds, press cake, pomace, and vinegar offer versatile functional roles across food systems. They improve nutritional value, sensory qualities, and shelf life in bakery, dairy, meat, and beverage products while supporting sustainable waste valorization. Emerging secondary derivatives like powders and extracts further expand the potential for clean-label, health-promoting applications. This comprehensive review underscores the need for multidisciplinary research and development to advance sustainable production, postharvest management, and value-added utilization of date palm fruits, fostering enhanced food security, economic benefits, and consumer health worldwide.

Keywords: date palm fruit; food security; postharvest technology; cold storage; microbial contamination; date fruit derivatives; functional foods; health benefits (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/16/7491/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/16/7491/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:16:p:7491-:d:1727832

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-20
Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7491-:d:1727832