EconPapers    
Economics at your fingertips  
 

Microclimatic Effects of Retrofitting a Green Roof Beneath an East–West PV Array: A Two-Year Field Study in Austria

Leonie Möslinger (), Erich Streit, Azra Korjenic and Abdulah Sulejmanoski
Additional contact information
Leonie Möslinger: Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Faculty of Civil- and Environmental Engineering, Vienna University of Technology, Karlsplatz 13/207-3, 1040 Vienna, Austria
Erich Streit: Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Faculty of Civil- and Environmental Engineering, Vienna University of Technology, Karlsplatz 13/207-3, 1040 Vienna, Austria
Azra Korjenic: Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Faculty of Civil- and Environmental Engineering, Vienna University of Technology, Karlsplatz 13/207-3, 1040 Vienna, Austria
Abdulah Sulejmanoski: Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Faculty of Civil- and Environmental Engineering, Vienna University of Technology, Karlsplatz 13/207-3, 1040 Vienna, Austria

Sustainability, 2025, vol. 17, issue 16, 1-23

Abstract: Integrating photovoltaic (PV) systems with green roofs presents a synergistic approach to urban sustainability. Many existing flat-roof PV installations, often east–west oriented with limited elevation, present integration challenges for green roofs and are therefore understudied. This study addresses this by investigating the microclimatic effects of retrofitting an extensive green roof beneath such an existing PV array. Over a two-year period, continuous measurements of sub-panel air temperature, relative humidity, and module surface temperature were conducted. Results show that the green roof reduced average midday sub-panel air temperatures by 1.7–2.2 °C, with peak reductions up to 8 °C during summer, while nighttime temperatures were higher above the green roof. Relative humidity increased by up to 8.1 percentage points and module surface temperatures beneath the green roof were lowered by 0.4–1.5 °C, though with greater variability. Computational fluid dynamics simulations confirmed that evaporative cooling was spatially confined beneath the panels and highlighted the influence of structural features on airflow and convective cooling. Despite limited vegetation beneath the panels, the green roof retained moisture longer than the gravel roof, resulting in particularly strong cooling effects in the days following rainfall. The study highlights the retrofitting potential for improving rooftop climates, while showing key design recommendations for enhanced system performance.

Keywords: photovoltaic green roof (PVGR); microclimate; green infrastructure; rooftop retrofitting (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/16/7495/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/16/7495/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:16:p:7495-:d:1727810

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-11
Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7495-:d:1727810