EconPapers    
Economics at your fingertips  
 

Towards Sustainable Airport Operations: Emission Analysis of Taxiing Solutions

Marta Maciejewska and Paula Kurzawska-Pietrowicz ()
Additional contact information
Marta Maciejewska: Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland
Paula Kurzawska-Pietrowicz: Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland

Sustainability, 2025, vol. 17, issue 18, 1-15

Abstract: Airport operations significantly contribute to air pollution in their vicinity through various sources, including aircraft activities—particularly taxiing and take-off—as well as ground support equipment, service vehicles, and maintenance work. Since emissions from aircraft engines represent the primary pollution source at airports, it is essential to reduce emissions at every phase of the LTO (landing and take-off) cycle to improve local air quality and promote environmental sustainability. Given the research gap in emission analysis, a comprehensive LCA framework for airport pushback and taxi operations is proposed, integrating tow truck propulsion, a taxiing strategy, and fleet management. Given the complexity of the issue, the authors first decided to investigate emissions from taxiing operations using tow trucks with different powertrains. The analyses performed were considered preliminary and a starting point for exploring emissions during taxiing operations at airports. Typically, aircraft are pushed back from the apron and then taxi under their own power using both engines at approximately 7% of maximum thrust. To substantially reduce exhaust emissions, external towing vehicles can be employed to move aircrafts from the apron to the runway. This study evaluates the potential for emission reductions in CO 2 and other harmful compounds such as CO, HC, NO x , and PM by using electric towing vehicles (ETVs). It also compares emissions from different taxiing methods: full-engine taxiing, single-engine taxiing, ETV-assisted taxiing, and taxiing using diesel and petrol-powered tow vehicles. The analysis was conducted for Warsaw and Poznań airports. Three aircraft types—the most commonly operating at these airports—were selected to assess emissions under various taxiing scenarios. The results show that using electric towing vehicles can reduce CO and NO x emissions to nearly zero compared to other methods. Interestingly, CO emissions from full-engine taxiing were lower than those from petrol-powered towing, although the Embraer 195 showed the highest CO emissions among the selected aircrafts. HC emissions were lowest for the A321neo and also relatively low for the diesel towing vehicle. The use of electric tow trucks significantly reduces CO 2 emissions: only 2.8–4.4 kg compared to 380–450 kg when taxiing with engines. This research highlights the critical role of sustainable ground operations in reducing harmful emissions and underscores the importance of integrating sustainability into airport taxiing practices.

Keywords: air pollution; towing vehicle; airport’s vicinity; LTO cycle; ETV (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/18/8242/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/18/8242/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:18:p:8242-:d:1748870

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-14
Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8242-:d:1748870