EconPapers    
Economics at your fingertips  
 

Maximizing Energy Recovery from Waste Tires Through Cement Production Optimization in Togo—A Case Study

Mona-Maria Narra (), Essossinam Beguedou, Satyanarayana Narra and Michael Nelles
Additional contact information
Mona-Maria Narra: Material and Energy Valorisation of Biogenous Residues, Departement of Waste and Resource Management, Faculty for Agriculture, Civil and Environmental Engineering, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
Essossinam Beguedou: Material and Energy Valorisation of Biogenous Residues, Departement of Waste and Resource Management, Faculty for Agriculture, Civil and Environmental Engineering, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
Satyanarayana Narra: Material and Energy Valorisation of Biogenous Residues, Departement of Waste and Resource Management, Faculty for Agriculture, Civil and Environmental Engineering, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
Michael Nelles: Material and Energy Valorisation of Biogenous Residues, Departement of Waste and Resource Management, Faculty for Agriculture, Civil and Environmental Engineering, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany

Waste, 2025, vol. 3, issue 2, 1-16

Abstract: The cement industry faces increasing energy costs and environmental pressures, driving the adoption of alternative fuels derived from waste materials. In Togo, approximately 350,000 t of end-of-life tires (ELT) are generated annually, creating significant environmental and health hazards through uncontrolled disposal and burning practices. This study investigated the technical feasibility and economic viability of incorporating waste tires as an alternative fuel in cement manufacturing. Tire-derived fuel (TDF) performance was evaluated by comparing pre-processed industrial tires with unprocessed ones, focusing on clinker production loss, elemental composition, heating values, and bulk density. The results demonstrate that TDF exhibits superior performance characteristics, with the highest heating values, and meets all the required specifications for cement production. In contrast, whole tire incineration fails to satisfy the recommended criteria, necessitating blending with conventional fuels to maintain clinker quality and combustion efficiency. The investigation revealed no significant adverse effects on production processes or clinker quality while achieving substantial reductions in nitrogen and sulfur oxide emissions. The experimental results were compared with the theoretical burnout times to optimize the shredding operations and injection methods. However, several challenges remain unaddressed, including the absence of streamlined handling processes, limited understanding of long-term ecological and health impacts, and insufficient techno-economic assessments. Future research should prioritize identifying critical aging points, investigating self-rejuvenating behaviors, and quantifying long-term environmental implications. These findings provide a foundation for developing computational models to optimize the mixing ratios of alternative and fossil fuels in cement manufacturing, offering significant environmental, economic, and societal benefits for the cement industry.

Keywords: cement kiln; end-of-life tires (ELT); co-combustion; alternative fuel; clinker quality (search for similar items in EconPapers)
JEL-codes: Q1 Q16 Q18 Q2 Q20 Q23 Q24 Q25 Q28 Q3 Q31 Q38 Q5 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2813-0391/3/2/19/pdf (application/pdf)
https://www.mdpi.com/2813-0391/3/2/19/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jwaste:v:3:y:2025:i:2:p:19-:d:1674325

Access Statistics for this article

Waste is currently edited by Mr. Sumail Li

More articles in Waste from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-28
Handle: RePEc:gam:jwaste:v:3:y:2025:i:2:p:19-:d:1674325