EconPapers    
Economics at your fingertips  
 

Mining Customer-related Data to Enhance Home Delivery in E-commerce: an experimental study

Shenle Pan (), Han Yufei, Bin Qiao, Etta Grover-Silva () and Vaggelis Giannikas
Additional contact information
Shenle Pan: CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique
Bin Qiao: CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique
Etta Grover-Silva: PERSEE - Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres
Vaggelis Giannikas: Institute for Manufacturing - CAM - University of Cambridge [UK]

Post-Print from HAL

Abstract: In a B2C e-commerce environment, home delivery service refers to delivering goods from an e-retailer's storage point to a customer's home. High rate of failed delivery due to the customer's absence causes significant loss of logistics efficiency. This paper aims to study innovative solutions to the problem, such as data-related techniques. This paper proposes a methodological approach to use customer-related data to optimize home delivery. The idea is to estimate the attendance probability of a customer via mining his electricity consumption data, in order to improve the success rate of delivery and optimize transportation. Computational experiments reveal that the proposed approach could reduce the total distance from 3% to 20%, and theoretically increase the success rate around 18%-26%. Being an experimental study, this paper demonstrates the effectiveness of data-related techniques or data-based solutions in home delivery problem, and provides a methodological approach to this line of research.

Keywords: City Logistics; Home delivery; Data Mining; Electricity Consumption Data; Capacitated Vehicle Routing Problem with Time Windows (search for similar items in EconPapers)
Date: 2016-06-01
References: Add references at CitEc
Citations:

Published in 6th International Conference on Information Systems, Logistics and Supply Chain (ILS2016), Jun 2016, Bordeaux, France

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01320962

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-01320962