Spatial scale in land use models: Application to the Teruti-Lucas survey
Raja Chakir (),
Thibault Laurent,
Anne Ruiz-Gazen (),
Christine Thomas-Agnan () and
Céline Vignes
Additional contact information
Raja Chakir: ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech
Thibault Laurent: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique, CNRS - Centre National de la Recherche Scientifique
Anne Ruiz-Gazen: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique, Comue de Toulouse - Communauté d'universités et établissements de Toulouse
Christine Thomas-Agnan: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique, Comue de Toulouse - Communauté d'universités et établissements de Toulouse
Céline Vignes: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique, CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We consider the problem of land use prediction at different spatial scales using point level data such as the Teruti-Lucas (T-L hereafter1) survey and some explanatory variables. We analyze the components of the prediction error using a synthetic data set constructed from the Teruti-Lucas points in the Midi-Pyrénées region and a five categories land use classification. The study first shows that the number of points in the Teruti-Lucas survey is quite enough for estimating the probabilities of each land use category with a good quality. Furthermore it reveals that, contrary to usual practice, when the objective is to predict land use at aggregated levels, land use probabilities should be estimated at more locations where explanatory variables are available rather than restricting to the initial Teruti-Lucas locations. Indeed this strategy borrows strength from the knowledge of the explanatory variables which may be heterogeneous. Finally, guidelines for constructing the grid of locations for estimation are given from the analysis of the heterogeneity of each explanatory variable.
Keywords: Teruti-Lucas survey; Gini-Simpson impurity index (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:
Published in Spatial Statistics, 2016, 18 (Part A), 17 p. ⟨10.1016/j.spasta.2016.06.009⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01371099
DOI: 10.1016/j.spasta.2016.06.009
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().