EconPapers    
Economics at your fingertips  
 

Mitigating supply chain disruptions through interconnected logistics services in the Physical Internet

Yanyan Yang (), Shenle Pan () and Eric Ballot ()
Additional contact information
Yanyan Yang: CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique
Shenle Pan: CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique
Eric Ballot: CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: This paper investigates the resilience of inventory models using interconnected logistics services in the Physical Internet (PI). With traditional supply chain network design, companies define and optimise their own logistics networks, resulting in current logistics systems being a set of independent heterogeneous logistics networks. The concept of PI aims to integrate independent logistics networks into a global, open, interconnected system. Prior research has shown that new inventory models enabled by and applied to PI could help reduce inventory levels thanks to its high flexibility. Continuing along these lines, this paper examines how inventory models applying PI deal with disruptions at hubs and plants. To attain this, a single product inventory problem with uncertain demands and stochastic supply disruptions is studied. A simulation-based optimisation model is proposed to determine inventory control decisions. The results suggest that the PI inventory model, with greater agility and flexibility, outperforms the current classic inventory models in terms of resilience. Moreover, the difference in performance increases when the product value, penalty costs and disruption frequency increases. This paper indicates a novel approach to build a resilient supply network.

Keywords: Physical Internet; supply chain disruptions; inventory control; optimisation; simulation (search for similar items in EconPapers)
Date: 2016-08-05
References: Add references at CitEc
Citations:

Published in International Journal of Production Research, 2016

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01389874

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-01389874