Hedging of covered options with linear market impact and gamma constraint
Bruno Bouchard (),
G. Loeper and
Y. Zou
Additional contact information
Bruno Bouchard: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Y. Zou: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Within a financial model with linear price impact, we study the problem of hedging a covered European option under gamma constraint. Using stochastic target and partial differential equation smoothing techniques, we prove that the super-replication price is the viscosity solution of a fully non-linear parabolic equation. As a by-product, we show how "-optimal strategies can be constructed. Finally, a numerical resolution scheme is proposed.
Keywords: Stochastic target AMS 2010 Subject Classification: 91G20; Price impact; Hedging (search for similar items in EconPapers)
Date: 2017
Note: View the original document on HAL open archive server: https://hal.science/hal-01611790v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Published in SIAM Journal on Control and Optimization, 2017, 55 (5), pp.3319-3348
Downloads: (external link)
https://hal.science/hal-01611790v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01611790
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().