EconPapers    
Economics at your fingertips  
 

Pessimistic uplift modeling

Atef Shaar (), Talel Abdessalem () and Olivier Segard ()
Additional contact information
Atef Shaar: LTCI - Laboratoire Traitement et Communication de l'Information - Télécom ParisTech - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique, INFRES - Département Informatique et Réseaux - Télécom ParisTech
Talel Abdessalem: LTCI - Laboratoire Traitement et Communication de l'Information - Télécom ParisTech - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique, INFRES - Département Informatique et Réseaux - Télécom ParisTech
Olivier Segard: IMT-BS - MMS - Département Management, Marketing et Stratégie - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - TEM - Télécom Ecole de Management

Post-Print from HAL

Abstract: Uplift modeling is a machine learning technique that aims to model treatment effects heterogeneity. It has been used in business and health sectors to predict the effect of a specific action on a given individual. Despite its advantages, uplift models show high sensitivity to noise and disturbance, which leads to unreliable results. In this paper we show different approaches to address the problem of uplift modeling, we demonstrate how disturbance in data can affect uplift measurement. We propose a new approach, we call it Pessimistic Uplift Modeling, that minimizes disturbance effects. We compared our approach with the existing uplift methods, on simulated and real data-sets. The experiments show that our approach outperforms the existing approaches, especially in the case of high noise data environment.

Keywords: Database marketing; Uplift modeling; Treatment effects heterogeneity; Deferential relational learning (search for similar items in EconPapers)
Date: 2016-08-13
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Published in KDD 2016 : 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 2016, San Francisco, California, United States

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02376023

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-02376023