EconPapers    
Economics at your fingertips  
 

How to Extract Knowledge from Professional E-Mails

François Rauscher (), Nada Matta () and Hassan Atifi ()
Additional contact information
François Rauscher: Tech-CICO - TECHnologies pour la Coopération, l’Interaction et les COnnaissances dans les collectifs - ICD - Institut Charles Delaunay - UTT - Université de Technologie de Troyes - CNRS - Centre National de la Recherche Scientifique - CNRS - Centre National de la Recherche Scientifique
Nada Matta: Tech-CICO - TECHnologies pour la Coopération, l’Interaction et les COnnaissances dans les collectifs - ICD - Institut Charles Delaunay - UTT - Université de Technologie de Troyes - CNRS - Centre National de la Recherche Scientifique - CNRS - Centre National de la Recherche Scientifique
Hassan Atifi: Tech-CICO - TECHnologies pour la Coopération, l’Interaction et les COnnaissances dans les collectifs - ICD - Institut Charles Delaunay - UTT - Université de Technologie de Troyes - CNRS - Centre National de la Recherche Scientifique - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: Computer mediated communication is ubiquitous in Software design projects. Email is used for project coordination, but also for design, implementation and test. Especially with currents agile development methods, it is very common to interact through computer meditated communication like email, instant messaging and other collaborative tools in order to express functional needs, notify of issues and take appropriate decisions. In this paper we propose a Knowledge Trace Retrieval (KTR) system. It addresses the problem of retrieving elements of problem solving and design rationale inside business emails from a project. Even if knowledge management tools and practices are well spread in industry, they are rarely used for small projects. Our system aims at helping user retrieve traces of problem solving knowledge in large corpus of email from a past project. The framework and methodology is based on enhanced context (project data, user competencies and profiles), and use machine learning technics and ranking algorithm.

Keywords: computer mediated communication; electronic mail; knowledge acquisition; knowledge management; learning (artificial intelligence); problem solving; software prototyping (search for similar items in EconPapers)
Date: 2015-11-23
References: Add references at CitEc
Citations:

Published in 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Nov 2015, Bangkok, Thailand. pp.687-692, ⟨10.1109/SITIS.2015.113⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02918398

DOI: 10.1109/SITIS.2015.113

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-02918398