A Game Theory Approach for the Groundwater Pollution Control
Emmanuelle Augeraud-Véron,
Catherine Choquet,
Éloïse Comte () and
Moussa Diédhiou
Additional contact information
Catherine Choquet: ULR - La Rochelle Université
Éloïse Comte: UR LISC - Laboratoire d'ingénierie pour les systèmes complexes - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Moussa Diédhiou: BSE - Bordeaux Sciences Economiques - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
A differential game modeling the noncooperative outcome of pollution in groundwater is studied. Spatio-temp oral objectives are constrained by a convection-diffusion-reaction equation ruling the spread of the pollution in the aquifer, and the velocity of the flow solves an elliptic partial differential equation. The existence of a Nash equilibrium is proved using a fixed point strategy. A uniqueness result for the Nash equilibrium is also proved under some additional assumptions. Some numerical illustrations are provided.
Keywords: Words; PDEs; Differential game theory; Nash equilibrium; Hydrogeological state equations (search for similar items in EconPapers)
Date: 2022-06
References: Add references at CitEc
Citations:
Published in SIAM Journal on Control and Optimization, 2022, 60 (3), pp.1667-1689. ⟨10.1137/19M1278223⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03739654
DOI: 10.1137/19M1278223
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().