EconPapers    
Economics at your fingertips  
 

Bending stiffness of Candida albicans hyphae as a proxy of cell wall properties

Elodie Couttenier, Sophie Bachellier-Bassi (), Christophe D'Enfert () and Catherine Villard ()
Additional contact information
Elodie Couttenier: PCC - Laboratoire Physico-Chimie Curie [Institut Curie] - Institut Curie [Paris] - INC-CNRS - Institut de Chimie - CNRS Chimie - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique, BPF - Biologie et Pathogénicité fongiques - Fungal Biology and Pathogenicity - IP - Institut Pasteur [Paris] - UPCité - Université Paris Cité - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Sophie Bachellier-Bassi: BPF - Biologie et Pathogénicité fongiques - Fungal Biology and Pathogenicity - IP - Institut Pasteur [Paris] - UPCité - Université Paris Cité - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Christophe D'Enfert: BPF - Biologie et Pathogénicité fongiques - Fungal Biology and Pathogenicity - IP - Institut Pasteur [Paris] - UPCité - Université Paris Cité - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Catherine Villard: PCC - Laboratoire Physico-Chimie Curie [Institut Curie] - Institut Curie [Paris] - INC-CNRS - Institut de Chimie - CNRS Chimie - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: The cell wall is a key component of fungi. It constitutes a highly regulated viscoelastic shell which counteracts internal cell turgor pressure. Its mechanical properties thus contribute to define cell morphology. Measurements of the elastic moduli of the fungal cell wall have been carried out in many species including Candida albicans, a major human opportunistic pathogen. They mainly relied on atomic force microscopy, and mostly considered the yeast form. We developed a parallelized pressure-actuated microfluidic device to measure the bending stiffness of hyphae. We found that the cell wall stiffness lies in the MPa range. We then used three different ways to disrupt cell wall physiology: inhibition of beta-glucan synthesis, a key component of the inner cell wall; application of a hyperosmotic shock triggering a sudden decrease of the hyphal diameter; deletion of two genes encoding GPI-modified cell wall proteins resulting in reduced cell wall thickness. The bending stiffness values were affected to different extents by these environmental stresses or genetic modifications. Overall, our results support the elastic nature of the cell wall and its ability to remodel at the scale of the entire hypha over minutes.

Date: 2022-10-11
Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-03844306v1
References: Add references at CitEc
Citations:

Published in Lab on a Chip, 2022, 22 (20), pp.3898-3909. ⟨10.1039/d2lc00219a⟩

Downloads: (external link)
https://hal.inrae.fr/hal-03844306v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03844306

DOI: 10.1039/d2lc00219a

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-03844306