Partial Identification in Matching Models for the Marriage Market
Cristina Gualdani and
Shruti Sinha
Additional contact information
Cristina Gualdani: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Shruti Sinha: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Post-Print from HAL
Abstract:
We study partial identification of the preference parameters in the one-to-one matching model with perfectly transferable utilities. We do so without imposing parametric distributional as-sumptions on the unobserved heterogeneity and with data on one large market. We provide a tractable characterisation of the identified set under various classes of nonparametric distribu-tional assumptions on the unobserved heterogeneity. Using our methodology, we re-examine some of the relevant questions in the empirical literature on the marriage market, which have been previously studied under the Logit assumption. Our results reveal that many findings in the aforementioned literature are primarily driven by such parametric restrictions.
Date: 2023-05
References: Add references at CitEc
Citations:
Published in Journal of Political Economy, 2023, 131 (5), pp.1109-1171. ⟨10.1086/722415⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04232742
DOI: 10.1086/722415
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().