EconPapers    
Economics at your fingertips  
 

Smart Beamforming for High Mobility Millimeter-Wave Train-to-Infrastructure Networks: A Machine Learning Approach

Semah Mabrouki (), Iyad Dayoub () and Marion Berbineau ()
Additional contact information
Semah Mabrouki: COMNUM - IEMN - COMmunications NUMériques - IEMN - INSA Hauts-De-France - INSA Institut National des Sciences Appliquées Hauts-de-France - INSA - Institut National des Sciences Appliquées - IEMN - Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique - UPHF - Université Polytechnique Hauts-de-France - JUNIA - JUNIA - UCL - Université catholique de Lille, IEMN - Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique - UPHF - Université Polytechnique Hauts-de-France - JUNIA - JUNIA - UCL - Université catholique de Lille
Iyad Dayoub: COMNUM - IEMN - COMmunications NUMériques - IEMN - INSA Hauts-De-France - INSA Institut National des Sciences Appliquées Hauts-de-France - INSA - Institut National des Sciences Appliquées - IEMN - Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique - UPHF - Université Polytechnique Hauts-de-France - JUNIA - JUNIA - UCL - Université catholique de Lille, IEMN - Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique - UPHF - Université Polytechnique Hauts-de-France - JUNIA - JUNIA - UCL - Université catholique de Lille
Marion Berbineau: COSYS-LEOST - Laboratoire Électronique Ondes et Signaux pour les Transports - Université Gustave Eiffel

Post-Print from HAL

Abstract: The evolution of wireless communication systems is undergoing a transformative shift with the integration of Artificial Intelligence (AI). In the era of high-mobility millimeter-wave (mmWave) train-to-infrastructure (T2I) communication systems, the dynamic nature of the environment poses unique challenges for traditional beamforming approaches. Therefore, the demand for robust and adaptive beamforming solutions is paramount. This paper introduces a novel machine learning (ML)-driven beamforming solution tailored for predicting pairs of Three-dimensional (3D) beams at the receiver and transceiver sides in both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) scenarios. The proposed approach addresses the specific challenges posed by mmWave frequencies, train mobility, and diverse propagation and environmental conditions. The methodology of our work integrates the collection of a comprehensive dataset capturing the environmental conditions and encompassing the different characteristics of the train movement. To ensure accurate and timely predictions of 3D beam pairs, we carefully develop and compare various multi-class supervised machine learning classification algorithms. Experimental evaluations conducted in LoS and NLoS scenarios showcase the superior performance of the proposed beamforming technique. Our approach excels in accurately predicting 3D beams with negligible training overhead.

Date: 2024-08-06
References: Add references at CitEc
Citations:

Published in 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Aug 2024, Kingston, Canada. pp.746-752, ⟨10.1109/CCECE59415.2024.10667240⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04698453

DOI: 10.1109/CCECE59415.2024.10667240

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-04698453