Do You Care About Your Positions? Users Under Liquidation Risk in Decentralized Lending Protocol
Boyang Mu (),
Natkamon Tovanich () and
Julien Prat ()
Additional contact information
Boyang Mu: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Natkamon Tovanich: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, X - École polytechnique - IP Paris - Institut Polytechnique de Paris
Julien Prat: CNRS - Centre National de la Recherche Scientifique, CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, X - École polytechnique - IP Paris - Institut Polytechnique de Paris
Post-Print from HAL
Abstract:
Lending protocols have transformed the Decentralized Finance (DeFi) ecosystem, driving innovation while also introducing new risks. This study develops a machine learning framework to predict user behavior and assess factors influencing changes in health ratios within the Compound V2 protocol. By analyzing user historical data, position metrics, and market conditions, we propose machine learning-based models to predict whether users will adjust their positions or face liquidation. We find that Random Forest and XGBoost models excel in predicting these outcomes, with features like collateral values, historical risk exposure, and asset composition playing significant roles. Additionally, panel regression models reveal insights into health ratio dynamics over time and across asset types, as well as user sophistication. These findings offer a better understanding of user behavior, highlighting opportunities for improved risk modeling and adaptive strategies in DeFi lending.
Keywords: user modeling; decision-making; liquidation; financial risks; decentralized finance; lending protocols (search for similar items in EconPapers)
Date: 2025-06-02
New Economics Papers: this item is included in nep-pay
Note: View the original document on HAL open archive server: https://hal.science/hal-05041569v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in IEEE International Conference on Blockchain and Cryptocurrency, IEEE ComSoc, Jun 2025, Pisa, Italy
Downloads: (external link)
https://hal.science/hal-05041569v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05041569
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().