Public hesitancy for AI-based detection of neurodegenerative diseases in France
Ismaël Rafaï,
Bérengère Davin-Casalena,
Dimitri Dubois (),
Thierry Blayac () and
Bruno Ventelou ()
Additional contact information
Ismaël Rafaï: GREDEG - Groupe de Recherche en Droit, Economie et Gestion - UNS - Université Nice Sophia Antipolis (1965 - 2019) - CNRS - Centre National de la Recherche Scientifique - UniCA - Université Côte d'Azur
Bérengère Davin-Casalena: ORS PACA - Observatoire régional de la santé Provence-Alpes-Côte d'Azur [Marseille]
Dimitri Dubois: CEE-M - Centre d'Economie de l'Environnement - Montpellier - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement - UM - Université de Montpellier
Thierry Blayac: CEE-M - Centre d'Economie de l'Environnement - Montpellier - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement - UM - Université de Montpellier
Bruno Ventelou: AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Recent advances in artificial intelligence (AI) have made it possible to detect neurodegenerative diseases (NDDs) earlier, potentially improving patient outcomes. However, AI-based detection tools remain underutilized. We studied individual valuation for early diagnosis tests for NDDs. We conducted a discrete choice experiment with a representative sample of the French adult population (N = 1017). Participants were asked to choose between early diagnosis tests that differed in terms of: (1) type of test (saliva vs. AI-based tests analysing electronic health records); (2) identity of the person communicating the test results; (3) sensitivity; (4) specificity; and (5) price. We calculated the weights in the decision for each attribute and examined how socio-demographic characteristics influenced them. Respondents revealed a reduced utility value when AI-based testing was involved (valuated at an average of €36.08, CI [€22.13; €50.89]) and when results were communicated by a private company (€95.15, CI [€82.01; €109.82]). We interpret these figures as the shadow price that the public attaches to medical data privacy. Beyond monetization, our representative sample of the French population appears reluctant to adopt AI-powered screening, particularly when performed on large sets of personal data. However, they would be more supportive when medical expertise is associated with the tests.
Date: 2025-07-23
New Economics Papers: this item is included in nep-dcm, nep-eur, nep-exp and nep-hea
Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-05189620v1
References: Add references at CitEc
Citations:
Published in Scientific Reports, 2025, 15, ⟨10.1038/s41598-025-11917-8⟩
Downloads: (external link)
https://hal.inrae.fr/hal-05189620v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05189620
DOI: 10.1038/s41598-025-11917-8
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().