EconPapers    
Economics at your fingertips  
 

ICS for complex data with application to outlier detection for density data

Camille Mondon, Thi Huong Trinh, Anne Ruiz-Gazen and Christine Thomas-Agnan
Additional contact information
Camille Mondon: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Thi Huong Trinh: Thuongmai University - Partenaires INRAE
Anne Ruiz-Gazen: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Christine Thomas-Agnan: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Post-Print from HAL

Abstract: Invariant coordinate selection (ICS) is a dimension reduction method, used as a preliminary step for clustering and outlier detection. It has been primarily applied to multivariate data. This work introduces a coordinate-free definition of ICS in an abstract Euclidean space and extends the method to complex data. Functional and distributional data are preprocessed into a finite-dimensional subspace. For example, in the framework of Bayes Hilbert spaces, distributional data are smoothed into compositional spline functions through the Maximum Penalised Likelihood method. We describe an outlier detection procedure for complex data and study the impact of some preprocessing parameters on the results. We compare our approach with other outlier detection methods through simulations, producing promising results in scenarios with a low proportion of outliers. ICS allows detecting abnormal climate events in a sample of daily maximum temperature distributions recorded across the provinces of Northern Vietnam between 1987 and 2016.

Keywords: Outlier detection; Temperature distribution; Invariant coordinate selection; Functional data; Extreme weather; Distributional data; Bayes spaces (search for similar items in EconPapers)
Date: 2026-01
References: Add references at CitEc
Citations:

Published in Journal of Multivariate Analysis, 2026, vol.211, ⟨10.1016/j.jmva.2025.105522⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05420405

DOI: 10.1016/j.jmva.2025.105522

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-12-23
Handle: RePEc:hal:journl:hal-05420405