Exploring student experiences with generative AI in master’s thesis writing: an experiential learning approach
Olfa Chourabi (),
Aurélie Dudézert () and
Thierno Tounkara ()
Additional contact information
Olfa Chourabi: LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], IMT-BS - TIM - Département Technologies, Information & Management - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris]
Aurélie Dudézert: LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], IMT-BS - TIM - Département Technologies, Information & Management - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris]
Thierno Tounkara: LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], IMT-BS - TIM - Département Technologies, Information & Management - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris]
Post-Print from HAL
Abstract:
The rapid adoption of Generative Artificial Intelligence (GenAI) in higher education has raised critical questions about its effective use within pedagogical practices. Multiple authors highlight both benefits such as interactivity, personalized learning, and assessment support and challenges, including risks of plagiarism, algorithmic bias, and data privacy concerns. Despite the growing attention to GenAI in higher education, empirical research on its effective integration into advanced academic programs remains scarce. This paper bridges this gap by applying Kolb's experiential learning framework to examine students' experiences using GenAI in a Master's thesis-writing course within a Management Information Systems (MIS) curriculum. The findings reveal that students predominantly used GenAI as a productivity and cognitive support tool, particularly for idea structuring, proofreading, and transcription. While its use improved efficiency and clarity, issues such as inconsistent reliability emphasized the necessity for critical engagement and guided pedagogical support. These results highlight the importance of establishing structured frameworks that promote responsible, effective, and ethically informed use of GenAI to enhance learning outcomes.
Keywords: Master’s thesis writing; Higher Education; Experiential Learning; Generative AI (search for similar items in EconPapers)
Date: 2025-10-29
References: Add references at CitEc
Citations:
Published in ICIKS 2025 : 7th International Conference on Information and Knowledge Systems, Oct 2025, Sousse, Tunisia
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05451137
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().