Inexact subgradient methods for semialgebraic functions
Jérôme Bolte,
Tam Le,
Éric Moulines and
Edouard Pauwels
Additional contact information
Jérôme Bolte: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Edouard Pauwels: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Post-Print from HAL
Abstract:
Motivated by the extensive application of approximate gradients in machine learning and optimization, we investigate inexact subgradient methods subject to persistent additive errors. Within a nonconvex semialgebraic framework, assuming boundedness or coercivity, we establish that the method yields iterates that eventually fluctuate near the critical set at a proximity characterized by an distance, where denotes the magnitude of subgradient evaluation errors, and encapsulates geometric characteristics of the underlying problem. Our analysis comprehensively addresses both vanishing and constant step-size regimes. Notably, the latter regime inherently enlarges the fluctuation region, yet this enlargement remains on the order of . In the convex scenario, employing a universal error bound applicable to coercive semialgebraic functions, we derive novel complexity results concerning averaged iterates. Additionally, our study produces auxiliary results of independent interest, including descent-type lemmas for nonsmooth nonconvex functions and an invariance principle governing the behavior of algorithmic sequences under small-step limits.
Keywords: Inexact subgradient; Clarke subdifferential; Nonsmooth nonconvex optimization; Path differentiable functions; First-order methods; Semialgebraic functions (search for similar items in EconPapers)
Date: 2025-06-20
References: Add references at CitEc
Citations:
Published in Mathematical Programming, 2025, ⟨10.1007/s10107-025-02245-w⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05471240
DOI: 10.1007/s10107-025-02245-w
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().