EconPapers    
Economics at your fingertips  
 

Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients

Daniel de Wolf () and Yves Smeers
Additional contact information
Daniel de Wolf: TVES - Territoires, Villes, Environnement & Société - ULR 4477 - ULCO - Université du Littoral Côte d'Opale - Université de Lille, CORE - Center of Operation Research and Econometrics [Louvain] - UCL - Université Catholique de Louvain = Catholic University of Louvain, ULCO - Université du Littoral Côte d'Opale
Yves Smeers: UCL - Université Catholique de Louvain = Catholic University of Louvain, CORE - Center of Operation Research and Econometrics [Louvain] - UCL - Université Catholique de Louvain = Catholic University of Louvain

Post-Print from HAL

Abstract: We present here a characterization of the Clarke subdifferential of the optimal value function of a linear program as a function of matrix coefficients. We generalize the result of Freund (1985) to the cases where derivatives may not be defined because of the existence of multiple primal or dual solutions.

Keywords: Non- differentiable programming; Linear programming; Parametric linear programming (search for similar items in EconPapers)
Date: 2021-06-01
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02396708v2
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Published in European Journal of Operational Research, 2021, 291 (2), pp.491-496. ⟨10.1016/j.ejor.2019.11.020⟩

Downloads: (external link)
https://shs.hal.science/halshs-02396708v2/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-02396708

DOI: 10.1016/j.ejor.2019.11.020

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-04-12
Handle: RePEc:hal:journl:halshs-02396708