A note on market completeness with American put options
Luciano Campi ()
Additional contact information
Luciano Campi: FiME Lab - Laboratoire de Finance des Marchés d'Energie - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CREST - EDF R&D - EDF R&D - EDF - EDF, CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
We consider a non necessarily complete financial market with one bond and one risky asset, whose price process is modelled by a suitably integrable, strictly positive, càdlàg process $S$ over $[0, T]$. Every option price is defined as the conditional expectation under a given equivalent (true) martingale measure $\mathbb P$, the same for all options. We show that every positive contingent claim on $S$ can be approximately replicated (in $L^2$-sense) by investing dynamically in the underlying and statically in all American put options (of every strike price $k$ and with the same maturity $T$). We also provide a counter-example to static hedging with European call options of all strike prices and all maturities $t\leq T$.
Date: 2011-02-15
Note: View the original document on HAL open archive server: https://hal.science/hal-00566235v1
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-00566235v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00566235
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().