Non Quadratic Local Risk-Minimization for Hedging Contingent Claims in the Presence of Transaction Costs
Frédéric Abergel () and
Nicolas Millot
Additional contact information
Frédéric Abergel: MAS - Mathématiques Appliquées aux Systèmes - EA 4037 - Ecole Centrale Paris, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec
Nicolas Millot: MAS - Mathématiques Appliquées aux Systèmes - EA 4037 - Ecole Centrale Paris, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec
Working Papers from HAL
Abstract:
This paper is devoted to the study of derivative hedging in incomplete markets when frictions are considered. We extend the general local risk minimisation approach introduced in [1] to account for liquidity costs, and derive the corresponding optimal strategies in both the discrete- and continuous-time settings. We examplify our method in the case of stochastic volatility and/or jump-diffusion models.
Date: 2011-12-06
New Economics Papers: this item is included in nep-ore
Note: View the original document on HAL open archive server: https://hal.science/hal-00621256v2
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://hal.science/hal-00621256v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00621256
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().