Analysis of the Risk-Sharing Principal-Agent problem through the Reverse-Hölder inequality
Jessica Martin () and
Anthony Réveillac ()
Additional contact information
Jessica Martin: INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse, IMT - Institut de Mathématiques de Toulouse UMR5219 - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique
Anthony Réveillac: INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse, IMT - Institut de Mathématiques de Toulouse UMR5219 - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
In this paper we provide an alternative framework to tackle the first-best Principal-Agent problem under CARA utilities. This framework leads to both a proof of existence and uniqueness of the solution to the Risk-Sharing problem under very general assumptions on the underlying contract space. Our analysis relies on an optimal decomposition of the expected utility of the Principal in terms of the reservation utility of the Agent and works both in a discrete time and continuous time setting. As a by-product this approach provides a novel way of characterizing the optimal contract in the CARA setting, which is as an alternative to the widely used Lagrangian method, and some analysis of the optimum.
Keywords: Uniqueness; Principal Agent problem; Existence; First-Best; Optimal Contracting Theory; Reverse Hölder inequality; Risk-Sharing; Borch rule (search for similar items in EconPapers)
Date: 2019-12-13
New Economics Papers: this item is included in nep-cta and nep-upt
Note: View the original document on HAL open archive server: https://hal.science/hal-01874707v3
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-01874707v3/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-01874707
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().