EconPapers    
Economics at your fingertips  
 

Revisiting integral functionals of geometric Brownian motion

Elena Boguslavskaya and Lioudmila Vostrikova ()
Additional contact information
Lioudmila Vostrikova: LAREMA - Laboratoire Angevin de Recherche en Mathématiques - UA - Université d'Angers - CNRS - Centre National de la Recherche Scientifique

Working Papers from HAL

Abstract: In this paper we revisit the integral functional of geometric Brownian motion $I_t= \int_0^t e^{-(\mu s +\sigma W_s)}ds$, where µ ∈ R, σ > 0, and $(W_s )_s>0 $i s a standard Brownian motion. Specifically, we calculate the Laplace transform in t of the cumulative distribution function and of the probability density function of this functional.

Keywords: exponential integral functional; Laplace transform; Geometric Brownian motion (search for similar items in EconPapers)
Date: 2020-01-30
Note: View the original document on HAL open archive server: https://hal.science/hal-02461094
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-02461094/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-02461094

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:hal-02461094