EconPapers    
Economics at your fingertips  
 

Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets

Timothée Fabre and Ioane Muni Toke
Additional contact information
Timothée Fabre: MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay

Working Papers from HAL

Abstract: We propose a novel approach to marked Hawkes kernel inference which we name the moment-based neural Hawkes estimation method. Hawkes processes are fully characterized by their first and second order statistics through a Fredholm integral equation of the second kind. Using recent advances in solving partial differential equations with physics-informed neural networks, we provide a numerical procedure to solve this integral equation in high dimension. Together with an adapted training pipeline, we give a generic set of hyperparameters that produces robust results across a wide range of kernel shapes. We conduct an extensive numerical validation on simulated data. We finally propose two applications of the method to the analysis of the microstructure of cryptocurrency markets. In a first application we extract the influence of volume on the arrival rate of BTC-USD trades and in a second application we analyze the causality relationships and their directions amongst a universe of 15 cryptocurrency pairs in a centralized exchange.

Date: 2024-01-18
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04403055

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:hal-04403055