CVA Sensitivities, Hedging and Risk
Stéphane Crépey (),
Botao Li,
Hoang Nguyen and
Bouazza Saadeddine ()
Additional contact information
Stéphane Crépey: UFR Mathématiques UPCité - UFR Mathématiques [Sciences] - Université Paris Cité - UPCité - Université Paris Cité
Botao Li: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Hoang Nguyen: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Working Papers from HAL
Abstract:
We present a unified framework for computing CVA sensitivities, hedging the CVA, and assessing CVA risk, using probabilistic machine learning meant as refined regression tools on simulated data, validatable by low-cost companion Monte Carlo procedures. Various notions of sensitivities are introduced and benchmarked numerically. We identify the sensitivities representing the best practical trade-offs in downstream tasks including CVA hedging and risk assessment.
Keywords: CVA; sensitivities; neural networks; model risk (search for similar items in EconPapers)
Date: 2024-07-26
Note: View the original document on HAL open archive server: https://hal.science/hal-04661959v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-04661959v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04661959
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().