EconPapers    
Economics at your fingertips  
 

Mixed Markov-Perfect Equilibria in the Continuous-Time War of Attrition

Jean-Paul Décamps (), Thomas Mariotti () and Fabien Gensbittel
Additional contact information
Jean-Paul Décamps: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Thomas Mariotti: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Working Papers from HAL

Abstract: We prove the existence of a Markov-perfect equilibrium in randomized stopping times for a model of the war of attrition in which the underlying state variable follows a homogenous linear diffusion. We first prove that the space of Markovian randomized stopping times can be topologized as a compact absolute retract. This in turn enables us to use a powerful fixed-point theorem by Eilenberg and Montgomery [16] to prove our existence theorem. We illustrate our results with an example of a war of attrition that admits a mixed-strategy Markov-perfect equilibrium but no pure-strategy Markovperfect equilibrium.

Keywords: War of Attrition; Markovian Randomized Stopping Time; Markov-Perfect Equilibrium; Fixed-Point Theorem (search for similar items in EconPapers)
Date: 2024-08
Note: View the original document on HAL open archive server: https://hal.science/hal-04748393v1
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-04748393v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04748393

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:hal-04748393