Mixed Markov-Perfect Equilibria in the Continuous-Time War of Attrition
Jean-Paul Décamps (),
Thomas Mariotti () and
Fabien Gensbittel
Additional contact information
Jean-Paul Décamps: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Thomas Mariotti: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Working Papers from HAL
Abstract:
We prove the existence of a Markov-perfect equilibrium in randomized stopping times for a model of the war of attrition in which the underlying state variable follows a homogenous linear diffusion. We first prove that the space of Markovian randomized stopping times can be topologized as a compact absolute retract. This in turn enables us to use a powerful fixed-point theorem by Eilenberg and Montgomery [16] to prove our existence theorem. We illustrate our results with an example of a war of attrition that admits a mixed-strategy Markov-perfect equilibrium but no pure-strategy Markovperfect equilibrium.
Keywords: War of Attrition; Markovian Randomized Stopping Time; Markov-Perfect Equilibrium; Fixed-Point Theorem (search for similar items in EconPapers)
Date: 2024-08
Note: View the original document on HAL open archive server: https://hal.science/hal-04748393v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-04748393v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04748393
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().