Pricing and hedging for a sticky diffusion
Alexis Anagnostakis ()
Additional contact information
Alexis Anagnostakis: AIRSEA - Mathematics and computing applied to oceanic and atmospheric flows - Centre Inria de l'Université Grenoble Alpes - Inria - Institut National de Recherche en Informatique et en Automatique - UGA - Université Grenoble Alpes - LJK - Laboratoire Jean Kuntzmann - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Working Papers from HAL
Abstract:
We introduce a financial market model featuring a risky asset whose price follows a sticky geometric Brownian motion and a riskless asset that grows with a constant interest rate $r\in \mathbb R$. We prove that this model satisfies No Arbitrage (NA) and No Free Lunch with Vanishing Risk (NFLVR) only when $r=0 $. Under this condition, we derive the corresponding arbitrage-free pricing equation, assess replicability and representation of the replication strategy. We then show that all locally bounded replicable payoffs for the standard Black--Scholes model are also replicable for the sticky model. Last, we evaluate via numerical experiments the impact of hedging in discrete time and of misrepresenting price stickiness.
Keywords: no-arbitrage condition; derivatives pricing; arbitrage-free valuation; hedging time-granularity; model mismatch; sticky geometric Brownian motion (search for similar items in EconPapers)
Date: 2024
Note: View the original document on HAL open archive server: https://inria.hal.science/hal-04756051v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://inria.hal.science/hal-04756051v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04756051
DOI: 10.48550/arXiv.2311.17011
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().