EconPapers    
Economics at your fingertips  
 

Optimal Execution under Incomplete Information

Etienne Chevalier (), Yadh Hafsi () and Vathana Ly Vath ()
Additional contact information
Etienne Chevalier: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Yadh Hafsi: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Vathana Ly Vath: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Working Papers from HAL

Abstract: We study optimal liquidation strategies under partial information for a single asset within a finite time horizon. We propose a model tailored for high-frequency trading, capturing price formation driven solely by order flow through mutually stimulating marked Hawkes processes. The model assumes a limit order book framework, accounting for both permanent price impact and transient market impact. Importantly, we incorporate liquidity as a hidden Markov process, influencing the intensities of the point processes governing bid and ask prices. Within this setting, we formulate the optimal liquidation problem as an impulse control problem. We elucidate the dynamics of the hidden Markov chain's filter and determine the related normalized filtering equations. We then express the value function as the limit of a sequence of auxiliary continuous functions, defined recursively. This characterization enables the use of a dynamic programming principle for optimal stopping problems and the determination of an optimal strategy. It also facilitates the development of an implementable algorithm to approximate the original liquidation problem. We enrich our analysis with numerical results and visualizations of candidate optimal strategies.

Keywords: Impulse Control; Optimal Execution; Stochastic Filtering; Hawkes Processes; Market Microstructure; Hidden Markov Chain (search for similar items in EconPapers)
Date: 2024-12-04
Note: View the original document on HAL open archive server: https://hal.science/hal-04817891v1
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-04817891v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04817891

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:hal-04817891