EconPapers    
Economics at your fingertips  
 

STAN: Smooth Transition Autoregressive Networks

Hugo Inzirillo and Rémi Genet
Additional contact information
Hugo Inzirillo: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Rémi Genet: DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique

Working Papers from HAL

Abstract: Traditional Smooth Transition Autoregressive (STAR) models offer an effective way to model these dynamics through smooth regime changes based on specific transition variables. In this paper, we propose a novel approach by drawing an analogy between STAR models and a multilayer neural network architecture. Our proposed neural network architecture mimics the STAR framework, employing multiple layers to simulate the smooth transition between regimes and capturing complex, nonlinear relationships. The network's hidden layers and activation functions are structured to replicate the gradual switching behavior typical of STAR models, allowing for a more flexible and scalable approach to regime-dependent modeling. This research suggests that neural networks can provide a powerful alternative to STAR models, with the potential to enhance predictive accuracy in economic and financial forecasting.

Date: 2025-02-04
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04928413

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-31
Handle: RePEc:hal:wpaper:hal-04928413