Non-Bayesian Learning in Misspecified Models
Sebastian Bervoets (),
Mathieu Faure () and
Ludovic Renou
Additional contact information
Sebastian Bervoets: AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique
Mathieu Faure: AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique
Ludovic Renou: QMUL - Queen Mary University of London
Working Papers from HAL
Abstract:
Deviations from Bayesian updating are traditionally categorized as biases, errors, or fallacies, thus implying their inherent "sub-optimality." We offer a more nuanced view. In learning problems with misspecified models, we show that some non-Bayesian updating can outperform Bayesian updating.
Keywords: learning; Bayesian; consistency (search for similar items in EconPapers)
Date: 2025-09-30
Note: View the original document on HAL open archive server: https://hal.science/hal-05293967v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-05293967v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05293967
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().