Explicit Recursive Construction of Super-Replication Prices under Proportional Transaction Costs
Emmanuel Lépinette and
Amal Omrani ()
Additional contact information
Emmanuel Lépinette: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Amal Omrani: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
We propose a constructive framework for the super-hedging problem of a European contingent claim under proportional transaction costs in discrete time. Our main contribution is an explicit recursive scheme that computes both the super-hedging price and the corresponding optimal strategy without relying on martingale arguments. The method is based on convex duality and a distorted Legendre-Fenchel transform, ensuring both tractability and convexity of the value functions. A numerical implementation on real market data illustrates the practical relevance of the proposed approach.
Keywords: Super-hedging problem Proportional transaction costs AIP condition Distorted Legendre-Fenchel transform Dynamic programming principle; Super-hedging problem; Proportional transaction costs; AIP condition; Distorted Legendre-Fenchel transform; Dynamic programming principle (search for similar items in EconPapers)
Date: 2025-11-04
Note: View the original document on HAL open archive server: https://hal.science/hal-05347450v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-05347450v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05347450
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().