EconPapers    
Economics at your fingertips  
 

NOISE-PROOFING UNIVERSAL PORTFOLIO SHRINKAGE

Paul Ruelloux (), Christian Bongiorno () and Damien Challet ()
Additional contact information
Paul Ruelloux: MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay, Barclays Bank
Christian Bongiorno: MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay
Damien Challet: MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay

Working Papers from HAL

Abstract: We enhance the Universal Portfolio Shrinkage Approximator (UPSA) of Kelly et al. (2023) by making it more robust with respect to estimation noise and covariate shift. UPSA optimizes the realized Sharpe ratio using a relatively small calibration window, leveraging ridge penalties and cross-validation to yield better portfolios. Yet, it still suffers from the staggering amount of noise in financial data. We propose two methods to make UPSA more robust and improve its efficiency: time-averaging of the optimal penalty weights and using the Average Oracle correlation eigenvalues to make covariance matrices less noisy and more robust to covariate shift. Combining these two long-term averages outperforms UPSA by a large margin in most specifications.

Keywords: Portfolio Optimization; Sharpe ratio; Shrinkage; Universal Portfolio Shrinkage; Average Oracle (search for similar items in EconPapers)
Date: 2025-11-13
Note: View the original document on HAL open archive server: https://hal.science/hal-05363639v1
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-05363639v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05363639

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2026-01-27
Handle: RePEc:hal:wpaper:hal-05363639