EconPapers    
Economics at your fingertips  
 

The chromatic sum of a graph: history and recent developments

Ewa Kubicka

International Journal of Mathematics and Mathematical Sciences, 2004, vol. 2004, 1-11

Abstract:

The chromatic sum of a graph is the smallest sum of colors among all proper colorings with natural numbers. The strength of a graph is the minimum number of colors necessary to obtain its chromatic sum. A natural generalization of chromatic sum is optimum cost chromatic partition (OCCP) problem, where the costs of colors can be arbitrary positive numbers. Existing results about chromatic sum, strength of a graph, and OCCP problem are presented together with some recent developments. The focus is on polynomial algorithms for some families of graphs and NP-completeness issues.

Date: 2004
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/2004/149326.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/2004/149326.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:149326

DOI: 10.1155/S0161171204306216

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:149326