EconPapers    
Economics at your fingertips  
 

A necessary and sufficient condition for uniqueness of solutions of singular differential inequalities

Alan V. Lair

International Journal of Mathematics and Mathematical Sciences, 1990, vol. 13, 1-18

Abstract:

The author proves that the abstract differential inequality ‖ u ′ ( t ) − A ( t ) u ( t ) ‖ 2 ≤ γ [ ω ( t ) + ∫ 0 t ω ( η ) d η ] in which the linear operator A ( t ) = M ( t ) + N ( t ) , M symmetric and N antisymmetric, is in general unbounded, ω ( t ) = t − 2 ψ ( t ) ‖ u ( t ) ‖ 2 + ‖ M ( t ) u ( t ) ‖ ‖ u ( t ) ‖ and γ is a positive constant has a nontrivial solution near t = 0 which vanishes at t = 0 if and only if ∫ 0 1 t − 1 ψ ( t ) d t = ∞ . The author also shows that the second order differential inequality ‖ u ″ ( t ) − A ( t ) u ( t ) ‖ 2 ≤ γ [ μ ( t ) + ∫ 0 t μ ( η ) d η ] in which μ ( t ) = t − 4 ψ 0 ( t ) ‖ u ( t ) ‖ 2 + t − 2 ψ 1 ( t ) ‖ u ′ ( t ) ‖ 2 has a nontrivial solution near t = 0 such that u ( 0 ) = u ′ ( 0 ) = 0 if and only if either ∫ 0 1 t − 1 ψ 0 ( t ) d t = ∞ or ∫ 0 1 t − 1 ψ 1 ( t ) d t = ∞ . Some mild restrictions are placed on the operators M and N . These results extend earlier uniqueness theorems of Hile and Protter.

Date: 1990
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/13/363475.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/13/363475.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:363475

DOI: 10.1155/S0161171290000382

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:363475