EconPapers    
Economics at your fingertips  
 

Fixed point theorems for generalized Lipschitzian semigroups

Jong Soo Jung and Balwant Singh Thakur

International Journal of Mathematics and Mathematical Sciences, 2001, vol. 28, 1-10

Abstract:

Let K be a nonempty subset of a p -uniformly convex Banach space E , G a left reversible semitopological semigroup, and ๐’ฎ = { T t : t โˆˆ G } a generalized Lipschitzian semigroup of K into itself, that is, for s โˆˆ G , โ€– T s x โˆ’ T s y โ€– โ‰ค a s โ€– x โˆ’ y โ€– + b s ( โ€– x โˆ’ T s x โ€– + โ€– y โˆ’ T s y โ€– ) + c s ( โ€– x โˆ’ T s y โ€– + โ€– y โˆ’ T s x โ€– ) , for x , y โˆˆ K where a s , b s , c s > 0 such that there exists a t 1 โˆˆ G such that b s + c s < 1 for all s โ‰ฝ t 1 . It is proved that if there exists a closed subset C of K such that โ‹‚ s co ยฏ { T t x : t โ‰ฝ s } โŠ‚ C for all x โˆˆ K , then ๐’ฎ with [ ( ฮฑ + ฮฒ ) p ( ฮฑ p โ‹… 2 p โˆ’ 1 โˆ’ 1 ) / ( c p โˆ’ 2 p โˆ’ 1 ฮฒ p ) โ‹… N p ] 1 / p < 1 has a common fixed point, where ฮฑ = lim sup s ( a s + b s + c s ) / ( 1 - b s - c s ) and ฮฒ = lim sup s ( 2 b s + 2 c s ) / ( 1 - b s - c s ) .

Date: 2001
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/28/509786.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/28/509786.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:509786

DOI: 10.1155/S0161171201007426

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:509786