Fixed point theorems for generalized Lipschitzian semigroups
Jong Soo Jung and
Balwant Singh Thakur
International Journal of Mathematics and Mathematical Sciences, 2001, vol. 28, 1-10
Abstract:
Let K be a nonempty subset of a p -uniformly convex Banach space E , G a left reversible semitopological semigroup, and ๐ฎ = { T t : t โ G } a generalized Lipschitzian semigroup of K into itself, that is, for s โ G , โ T s x โ T s y โ โค a s โ x โ y โ + b s ( โ x โ T s x โ + โ y โ T s y โ ) + c s ( โ x โ T s y โ + โ y โ T s x โ ) , for x , y โ K where a s , b s , c s > 0 such that there exists a t 1 โ G such that b s + c s < 1 for all s โฝ t 1 . It is proved that if there exists a closed subset C of K such that โ s co ยฏ { T t x : t โฝ s } โ C for all x โ K , then ๐ฎ with [ ( ฮฑ + ฮฒ ) p ( ฮฑ p โ
2 p โ 1 โ 1 ) / ( c p โ 2 p โ 1 ฮฒ p ) โ
N p ] 1 / p < 1 has a common fixed point, where ฮฑ = lim sup s ( a s + b s + c s ) / ( 1 - b s - c s ) and ฮฒ = lim sup s ( 2 b s + 2 c s ) / ( 1 - b s - c s ) .
Date: 2001
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/28/509786.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/28/509786.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:509786
DOI: 10.1155/S0161171201007426
Access Statistics for this article
More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().