Hankel complementary integral transformations of arbitrary order
M. Linares Linares and
J. M. R. Mendez Pérez
International Journal of Mathematics and Mathematical Sciences, 1992, vol. 15, 1-10
Abstract:
Four selfreciprocal integral transformations of Hankel type are defined through ( ℋ i , μ f ) ( y ) = F i ( y ) = ∫ 0 ∞ α i ( x ) ℊ i , μ ( x y ) f ( x ) d x , ℋ i , μ − 1 = ℋ i , μ , where i = 1 , 2 , 3 , 4 ; μ ≥ 0 ; α 1 ( x ) = x 1 + 2 μ , ℊ 1 , μ ( x ) = x − μ J μ ( x ) , J μ ( x ) being the Bessel function of the first kind of order μ ; α 2 ( x ) = x 1 − 2 μ , ℊ 2 , μ ( x ) = ( − 1 ) μ x 2 μ ℊ 1 , μ ( x ) ; α 3 ( x ) = x − 1 − 2 μ , ℊ 3 , μ ( x ) = x 1 + 2 μ ℊ 1 , μ ( x ) , and α 4 ( x ) = x − 1 + 2 μ , ℊ 4 , μ ( x ) = ( − 1 ) μ x ℊ 1 , μ ( x ) . The simultaneous use of transformations ℋ 1 , μ , and ℋ 2 , μ , (which are denoted by ℋ μ ) allows us to solve many problems of Mathematical Physics involving the differential operator Δ μ = D 2 + ( 1 + 2 μ ) x − 1 D , whereas the pair of transformations ℋ 3 , μ and ℋ 4 , μ , (which we express by ℋ μ * ) permits us to tackle those problems containing its adjoint operator Δ μ * = D 2 − ( 1 + 2 μ ) x − 1 D + ( 1 + 2 μ ) x − 2 , no matter what the real value of μ be. These transformations are also investigated in a space of generalized functions according to the mixed Parseval equation ∫ 0 ∞ f ( x ) g ( x ) d x = ∫ 0 ∞ ( ℋ μ f ) ( y ) ( ℋ μ * g ) ( y ) d y , which is now valid for all real μ .
Date: 1992
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/15/681761.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/15/681761.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:681761
DOI: 10.1155/S0161171292000401
Access Statistics for this article
More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().