EconPapers    
Economics at your fingertips  
 

Hankel complementary integral transformations of arbitrary order

M. Linares Linares and J. M. R. Mendez Pérez

International Journal of Mathematics and Mathematical Sciences, 1992, vol. 15, 1-10

Abstract:

Four selfreciprocal integral transformations of Hankel type are defined through ( ℋ i , μ f ) ( y ) = F i ( y ) = ∫ 0 ∞ α i ( x ) ℊ i , μ ( x y ) f ( x ) d x , ℋ i , μ − 1 = ℋ i , μ , where i = 1 , 2 , 3 , 4 ; μ ≥ 0 ; α 1 ( x ) = x 1 + 2 μ , ℊ 1 , μ ( x ) = x − μ J μ ( x ) , J μ ( x ) being the Bessel function of the first kind of order μ ; α 2 ( x ) = x 1 − 2 μ , ℊ 2 , μ ( x ) = ( − 1 ) μ x 2 μ ℊ 1 , μ ( x ) ; α 3 ( x ) = x − 1 − 2 μ , ℊ 3 , μ ( x ) = x 1 + 2 μ ℊ 1 , μ ( x ) , and α 4 ( x ) = x − 1 + 2 μ , ℊ 4 , μ ( x ) = ( − 1 ) μ x ℊ 1 , μ ( x ) . The simultaneous use of transformations ℋ 1 , μ , and ℋ 2 , μ , (which are denoted by ℋ μ ) allows us to solve many problems of Mathematical Physics involving the differential operator Δ μ = D 2 + ( 1 + 2 μ ) x − 1 D , whereas the pair of transformations ℋ 3 , μ and ℋ 4 , μ , (which we express by ℋ μ * ) permits us to tackle those problems containing its adjoint operator Δ μ * = D 2 − ( 1 + 2 μ ) x − 1 D + ( 1 + 2 μ ) x − 2 , no matter what the real value of μ be. These transformations are also investigated in a space of generalized functions according to the mixed Parseval equation ∫ 0 ∞ f ( x ) g ( x ) d x = ∫ 0 ∞ ( ℋ μ f ) ( y ) ( ℋ μ * g ) ( y ) d y , which is now valid for all real μ .

Date: 1992
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/15/681761.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/15/681761.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:681761

DOI: 10.1155/S0161171292000401

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:681761