EconPapers    
Economics at your fingertips  
 

Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions

G. A. Afrouzi

International Journal of Mathematics and Mathematical Sciences, 2002, vol. 30, 1-5

Abstract:

We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: − Δ u ( x ) = λ g ( x ) u ( x ) , x ∈ D ; ( ∂ u / ∂ n ) ( x ) + α u ( x ) = 0 , x ∈ ∂ D , where Δ is the standard Laplace operator, D is a bounded domain with smooth boundary, g : D → ℝ is a smooth function which changes sign on D and α ∈ ℝ . We discuss the relation between α and the principal eigenvalues.

Date: 2002
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/30/697818.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/30/697818.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:697818

DOI: 10.1155/S0161171202007780

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:697818