EconPapers    
Economics at your fingertips  
 

Remarques sur la frontière de martin biharmonique et la représentation intégrale des fonctions biharmoniques

Mohamed El Kadiri and Sabah Haddad

International Journal of Mathematics and Mathematical Sciences, 2005, vol. 2005, 1-12

Abstract:

Soit ( Ω , ℋ ) un espace biharmonique fort au sens de Smyrnelis dont les espaces harmoniques associés sont des espaces de Brelot qui vérifient l'axiome de proportionnalité. On montre que s'il existe un couple ℋ -harmonique > 0 sur Ω , alors lénsemble des points minimaux de la frontière de Martin biharmonique de Ω qui ne sont pas les pôles de couples biharmoniques minimaux est négiligeable dans un sens que l'on précisera. Dans le cas classique d'un domaine lipschitzien borné de ℝ n , nous montrons que cet ensemble est vide.

Let ( Ω , ℋ ) be a strong biharmonic space of Smyrnelis such that the harmonic spaces associeted are Brelot spaces satisfying the axiom of proportionnality. We prove that if there exists a biharmonic pair greater than 0 on Ω , then the set of minimal points of the biharmonic Martin boundary of Ω , that are not the poles of minimal biharmonic pairs, is negligible in some meaning that we will precise. For the classical case of a bounded Lipschitz domain of ℝ n , we prove that this set is empty.

Date: 2005
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/2005/714318.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/2005/714318.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:714318

DOI: 10.1155/IJMMS.2005.1461

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:714318