Fractional derivatives of holomorphic functions on bounded symmetric domains of C n
Zengjian Lou
International Journal of Mathematics and Mathematical Sciences, 1996, vol. 19, 1-2
Abstract:
Let f ∈ H ( B n ) . f | β | denotes the β t h fractional derivative of f . If f | β | ∈ A p , q , α ( B n ) , we show that
(I) β < α + 1 p + n q = δ , then f ∈ A s , t , α ( B n ) , and ‖ f ‖ s , t , α ≤ C ‖ f | β | ‖ p , q , α , s = δ p δ − β , t = δ q δ − β
(II) If β = α + 1 p + n q , then f ∈ B ( B n ) and ‖ f ‖ B ≤ C ‖ f | β | ‖ p , q , α
(III) If β > α + 1 p + n q , then f ∈ Λ β − α + 1 p − n q ( B n ) especially If β = 1 then ‖ f ‖ Λ 1 − α + 1 p − n q ≤ C ‖ f | 1 | ‖ p , q , α where B n is the unit ball of C n .
Date: 1996
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/19/746234.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/19/746234.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:746234
DOI: 10.1155/S0161171296000853
Access Statistics for this article
More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().