On the characteristic function of a sum of M -dependent random variables
Wansoo T. Rhee
International Journal of Mathematics and Mathematical Sciences, 1986, vol. 9, 1-8
Abstract:
Let S = f 1 + f 2 + … + f n be a sum of 1 -dependent random variables of zero mean. Let σ 2 = E S 2 , L = σ − 3 ∑ 1 ≦ i ≦ n E | f i | 3 . There is a universal constant a such that for a | t | L < 1 , we have | E exp ( i t S σ − 1 ) | ≦ ( 1 + a | t | ) sup { ( a | t | L ) − 1 / 4 ln L , exp ( − t 2 / 80 ) } . This bound is a very useful tool in proving Berry-Esseen theorems.
Date: 1986
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/9/781385.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/9/781385.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:781385
DOI: 10.1155/S0161171286000492
Access Statistics for this article
More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().