Parametrically excited nonlinear systems: a comparison of two methods
A. F. El-Bassiouny
International Journal of Mathematics and Mathematical Sciences, 2002, vol. 32, 1-23
Abstract:
Subharmonic resonance of two-degree-of-freedom systems with cubic nonlinearities to multifrequency parametric excitations in the presence of three-to-one internal resonance is investigated. Two approximate methods (the multiple scales and the generalized synchronization) are used to construct a first-order nonlinear ordinary differential equations governing the modulation of the amplitudes and phases. Steady state solutions and their stability are computed for selected values of the system parameters. The results obtained by the two methods are in excellent agreement. Numerical solutions are carried out and graphical representations of the results are presented and discussed.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/32/936523.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/32/936523.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:936523
DOI: 10.1155/S0161171202007019
Access Statistics for this article
More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().