EconPapers    
Economics at your fingertips  
 

Geometry without topology as a new conception of geometry

Yuri A. Rylov

International Journal of Mathematics and Mathematical Sciences, 2002, vol. 30, 1-28

Abstract:

A geometric conception is a method of a geometry construction. The Riemannian geometric conception and a new T-geometric one are considered. T-geometry is built only on the basis of information included in the metric (distance between two points). Such geometric concepts as dimension, manifold, metric tensor, curve are fundamental in the Riemannian conception of geometry, and they are derivative in the T-geometric one. T-geometry is the simplest geometric conception (essentially, only finite point sets are investigated) and simultaneously, it is the most general one. It is insensitive to the space continuity and has a new property: the nondegeneracy. Fitting the T-geometry metric with the metric tensor of Riemannian geometry, we can compare geometries, constructed on the basis of different conceptions. The comparison shows that along with similarity (the same system of geodesics, the same metric) there is a difference. There is an absolute parallelism in T-geometry, but it is absent in the Riemannian geometry. In T-geometry, any space region is isometrically embeddable in the space, whereas in Riemannian geometry only convex region is isometrically embeddable. T-geometric conception appears to be more consistent logically, than the Riemannian one.

Date: 2002
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/30/943212.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/30/943212.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:943212

DOI: 10.1155/S0161171202012243

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:943212