EconPapers    
Economics at your fingertips  
 

A Novel Description on Vague Graph with Application in Transportation Systems

Zheng Kou, Saeed Kosari, Maryam Akhoundi and Lazim Abdullah

Journal of Mathematics, 2021, vol. 2021, 1-11

Abstract: Fuzzy graph (FG) models embrace the ubiquity of existing in natural and man-made structures, specifically dynamic processes in physical, biological, and social systems. It is exceedingly difficult for an expert to model those problems based on a FG because of the inconsistent and indeterminate information inherent in real-life problems being often uncertain. Vague graph (VG) can deal with the uncertainty associated with the inconsistent and determinate information of any real-world problem, where FGs many fail to reveal satisfactory results. Regularity definitions have been of high significance in the network heterogeneity study, which have implications in networks found across biology, ecology, and economy; so, adjacency sequence (AS) and fundamental sequences (FS) of regular vague graphs (RVGs) are defined with examples. One essential and adequate prerequisite has been ascribed to a VG with maximum four vertices is that it should be regular based on the adjacency sequences concept. Likewise, it is described that if ζ and its principal crisp graph (CG) are regular, then all the nodes do not have to have the similar AS. In the following, we obtain a characterization of vague detour (VD) g-eccentric node, and the concepts of vague detour g-boundary nodes and vague detour g-interior nodes in a VG are examined. Finally, an application of vague detour g-distance in transportation systems is given.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2021/4800499.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2021/4800499.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:4800499

DOI: 10.1155/2021/4800499

Access Statistics for this article

More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jjmath:4800499