Fractional Modeling of Non-Newtonian Casson Fluid between Two Parallel Plates
Mubashir Qayyum,
Sidra Afzal,
Efaza Ahmad and
Serkan Araci
Journal of Mathematics, 2023, vol. 2023, 1-12
Abstract:
In this manuscript, fractional modeling of non-Newtonian Casson fluid squeezed between two parallel plates is performed under the influence of magneto-hydro-dynamic and Darcian effects. The Casson fluid model is fractionally transformed through mixed similarity transformations. As a result, partial differential equations (PDEs) are transformed to a fractional ordinary differential equation (FODE). In the current modeling, the continuity equation is satisfied while the momentum equation of the integral order Casson fluid is recovered when the fractional parameter is taken as α=1. A modified homotopy perturbation algorithm is used for the solution and analysis of highly nonlinear and fully fractional ordinary differential equations. Obtained solutions and errors are compared with existing integral order results from the literature. Graphical analysis is also performed at normal and radial velocity components for different fluid and fractional parameters. Analysis reveals that a few parameters are showing different behavior in a fractional environment as compared to existing integer-order cases from the literature. These findings affirm the importance of fractional calculus in terms of more generalized analysis of physical phenomena.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/jmath/2023/5517617.pdf (application/pdf)
http://downloads.hindawi.com/journals/jmath/2023/5517617.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jjmath:5517617
DOI: 10.1155/2023/5517617
Access Statistics for this article
More articles in Journal of Mathematics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().