Research on Monitoring Methods for the Appropriate Rice Harvest Period Based on Multispectral Remote Sensing
Chen Cong,
Cao Guangqiao,
Li Yibai,
Liu Dong,
Ma Bin,
Zhang Jinlong,
Li Liang,
Hu Jianping and
Juan L. G. Guirao
Discrete Dynamics in Nature and Society, 2022, vol. 2022, 1-11
Abstract:
Rice production is highly seasonal, and the timing for conducting harvest operations has a relatively significant impact on yields, especially the appropriate timing of the harvesting operations. Using scientific methods to monitor the appropriate harvest period can effectively reduce harvesting losses. Most of the existing studies in this field focus on yield changes that occur during the harvest period of rice and also use multispectral remote sensing for inversion of the crop canopy. However, there has been no research on combining the yields and spectral characteristics of the harvest period. In this article, a monitoring method for the appropriate harvest period of rice based on multispectral remote sensing was established. Remote sensing data of the rice canopy were acquired using UAV equipped with multispectral (550 nm, 660 nm, 735 nm, and 790 nm) cameras, and physiological characteristic data of rice moisture content, thousand-grain weight, and tassel ratios were determined simultaneously. Single-band and combined-band spectral reflectance were introduced as model input variables to compare the BP neural network, SVM, and decision tree; a quantitative inversion model of the physiological characteristics of rice was established. The accuracy of the inversion model with different input variables and model methods was evaluated, and the optimal inversion model for rice moisture content and thousand-grain weight was selected, which could be used to determine whether the crop was harvested during the appropriate period. The continuous monitoring of two rice varieties (South Japonica 46 and South Japonica 5055) indicated that the moisture content of South Japonica 46 decreased linearly during the 20-day trial period, while its thousand-grain weight showed a trend of increasing first and then decreasing. The moisture content of South Japonica 5055 showed a fluctuating downward trend, and its thousand-grain weight also showed a trend of increasing first and then decreasing. The spectral reflectance at 735 nm increased gradually, and that of both rice varieties increased from about 35% at the beginning of the trial to about 75% in the later stage. The spectral reflectance at the other three bands did not show significant change with the harvest date. The inverse model of spectral reflectance with rice thousand-grain weight and moisture content was established using the BP neural network, SVM, and decision tree. In single-band inversion models, the regression effect at 735 nm was relatively good in the BP neural network model, with the highest determination coefficients of spectral reflectance and thousand-grain weight of both rich varieties and the smallest RMSE of prediction results. In combined-band inversion models, the regression effects at 550 + 660+735 nm and 660 + 735+790 nm were the best in the SVM and thousand-grain weight inversion models.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/ddns/2022/1519667.pdf (application/pdf)
http://downloads.hindawi.com/journals/ddns/2022/1519667.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:1519667
DOI: 10.1155/2022/1519667
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().