A New Air Quality Prediction Framework for Airports Developed with a Hybrid Supervised Learning Method
Yong Tian,
Weifang Huang,
Bojia Ye and
Minhao Yang
Discrete Dynamics in Nature and Society, 2019, vol. 2019, 1-13
Abstract:
In order to reduce the air pollution impacts by aircraft operations around airports, a fast and accurate prediction of air quality related to aircraft operations is an essential prerequisite. This article proposes a new framework with a combination of the standard assessment procedure and machine learning methods for fast and accurate prediction of air quality in airports. Instead of taking some specific pollutant as concerned metric, we introduce the air quality index (AQI) for the first time to evaluate the air quality in airports. Then, following the standard assessment procedure proposed by International Civil Aviation Organization (ICAO), the airports AQIs in different scenarios are classified with consideration of the airport configuration, actual flight operations, aircraft performance, and related meteorological data. Taking the AQI classification results as sample data, several popular supervised learning methods are investigated for accurately predicting air quality in airports. The numerical tests implicate that the accuracy rate of prediction could reach more than 95% with only 0.022 sec; the proposed framework and the results could be used as the foundation for improving air quality impacts around airports.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2019/1562537.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2019/1562537.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:1562537
DOI: 10.1155/2019/1562537
Access Statistics for this article
More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().