EconPapers    
Economics at your fingertips  
 

Cooperative Coevolution with Two-Stage Decomposition for Large-Scale Global Optimization Problems

H. D. Yue, Y. Sun and Shi Cheng

Discrete Dynamics in Nature and Society, 2021, vol. 2021, 1-16

Abstract: Cooperative coevolution (CC) is an effective framework for solving large-scale global optimization (LSGO) problems. However, CC with static decomposition method is ineffective for fully nonseparable problems, and CC with dynamic decomposition method to decompose problems is computationally costly. Therefore, a two-stage decomposition (TSD) method is proposed in this paper to decompose LSGO problems using as few computational resources as possible. In the first stage, to decompose problems using low computational resources, a hybrid-pool differential grouping (HPDG) method is proposed, which contains a hybrid-pool-based detection structure (HPDS) and a unit vector-based perturbation (UVP) strategy. In the second stage, to decompose the fully nonseparable problems, a known information-based dynamic decomposition (KIDD) method is proposed. Analytical methods are used to demonstrate that HPDG has lower decomposition complexity compared to state-of-the-art static decomposition methods. Experiments show that CC with TSD is a competitive algorithm for solving LSGO problems.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/ddns/2021/2653807.pdf (application/pdf)
http://downloads.hindawi.com/journals/ddns/2021/2653807.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:2653807

DOI: 10.1155/2021/2653807

Access Statistics for this article

More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnddns:2653807