EconPapers    
Economics at your fingertips  
 

The Electrical Analogue Computer of Microtubule’s Protofilament

M. C. Ekosso, A. J. Fotue, S. C. Kenfack, H. Fotsin and L. C. Fai

Discrete Dynamics in Nature and Society, 2020, vol. 2020, 1-10

Abstract:

Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2020/4916202.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2020/4916202.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:4916202

DOI: 10.1155/2020/4916202

Access Statistics for this article

More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnddns:4916202